

Worksheet-02

Topics:-Capacitor, Capacitance of a capacitor and its unit, Energy stored in a capacitor, Charging and discharging a capacitor, Polarization of dielectric of a capacitor

- Q.1 A capacitor is a:
 - A) Two terminal passive device
 - B) Electric energy storing device
 - C) Electric charge storing device
 - D) All of these
- Q.2 In the relation $C = \frac{Q}{V}$, the graph between "C" and "V" when no dielectric is placed is:

- Q.3 The capacitance of capacitor does not depend on:
 - A) Area of plates
- C) Geometry of plates
- B) Distance between plates
- D) Thickness of plates
- Q.4 If area of plates of capacitor is doubled & distance between them is also doubled then capacitance:
 - A) Is doubled

C) Remains unchanged

B) Is halved times

- D) Is increased by four
- Q.5 A capacitor has a capacitance of 10µF when there is a dielectric of dielectric constant 2 between its plates. If the dielectric is removed then capacitance becomes:
 - A) 20 μF

C) 10 µF

B) 5 μF

- D) 40 µF
- Q.6 The potential difference between capacitor plates is 10 V when these is a dielectric slab with $\varepsilon_r = 2$ between its plates. If slab is removed now potential difference is:

A) 20 V

C) 10 V

B) 5 V

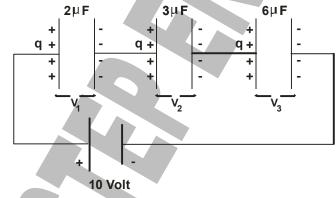
- D) 40 V
- Q.7 If the numerical value of area of each plate is equal to distance between parallel plates of a condenser (capacitor), then capacitance is equal to:
 - A) $\frac{2}{\varepsilon_{\circ}}$

C) ε.

B) 2ε.

- D) $\frac{1}{\varepsilon_0}$
- Q.8 Which one is true expression to find the series equivalent capacitance?
 - A) $\frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$
 - B) $C_e = \frac{C}{n}$ (n = No. of capacitors of equal capacitances, C =

Capacitance of one capacitor)


C)
$$C_e = \frac{C_1 C_2}{C_1 + C_2}$$

- D) All of these
- Q.9 When two capacitors of equal capacitances are connected in series their effective capacitance is Cs. Now if they are connected in parallel their effective capacitance becomes C_P , then $C_S:C_P$ is:
 - A) 2:1

C) 4:1

B) 1:2

- D) 1:4
- Q.10 The equivalent capacitance in the circuit shown is:

A) 1 μF

C) $\frac{1}{2} \mu F$

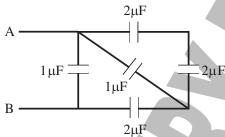
B) 2μF

- D) 3μF
- Q.11 Referring to circuit shown in previous question, what is the charge stored on capacitor with capacitance $3\mu F$:

A) $5\mu C$

C)10*µC*

B) $6\mu C$


D) $3\mu C$

Q.12 Because of electric polarization of dielectric:

- A) Surface charge density decreases
- B) Electric Intensity decreases
- C) Potential difference decrease
- D) All of these

Q.13 If a dielectric slab is placed between plates of an isolated charged capacitor, then:

- A) Charge on either plate remains same
- B) Capacitance of capacitor increases
- C) Both A and B
- D) None of these
- Q.14 The total capacitance of the system of capacitors shown in the figure between the points A and B)

A) $1 \mu F$

C) $3 \mu F$

B) $2 \mu F$

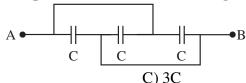
- D) $4 \mu F$
- Q.15 A $10\mu F$ capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 V. The capacitance of second capacitor is:
 - A) $20 \mu F$

C) $30 \mu F$

B) $10 \mu F$

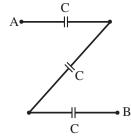
- D) $15 \mu F$
- Q.16 Two capacitors of capacitances 5 μF and 10 μF are connected in series. If a battery of voltage 15 V is connected across their combination, the voltage across capacitor of capacitance 5 μF is:
 - A) 5 V

C) 15 V


B) 10 V

- D) None of these
- Q.17 How three capacitors of 2 µF capacitance each are connected to have an equivalent capacitance of 3 µF?
 - A) All in series
 - B) All in parallel

USE THIS SPACE FOR


SCRATCH WORK

- C) Two in series and one in parallel
- D) Two in parallel and one is series
- Q.18 The effective capacitance between A & B in given circuit is:

- A) C
- B) 2C

- D) $\frac{C}{2}$
- Q.19 The effective capacitance between A & B in given circuit is:

A) 3C

C) $\frac{2C}{3}$

B) $\frac{C}{3}$

- D) $\frac{3C}{2}$
- Q.20 Which one is not the expression of energy stored in a capacitor?
 - A) $\frac{1}{2}CV^2$

C) $\frac{1}{2} \frac{Q^2}{C}$

B) $\frac{1}{2}QV$

- D) $\frac{1}{2}E^2\varepsilon_{\circ}\varepsilon_{\prime}$
- Q.21 A capacitor stores _____ energy in it _____ field.
 - A) Gravitational Potential, Gravitational
 - B) Electric Potential, Electric
 - C) Magnetic Potential, Magnetic
 - D) None of these
- Q.22 If the electric field strength is doubled, the energy stored in capacitor becomes:
 - A) Double

C) Remains same

B) Half

- D) Four times
- Q.23 If a dielectric slab of dielectric constant ε_r is placed between plates of a charged capacitor, the energy stored:
 - A) Decreases

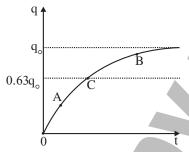
C) Remains same

B) Increases

- D) None of these
- Q.24 In the charging circuit of a capacitor if the value of capacitance is increased, then capacitor charges:

A) Slowly

C) At same speed


B) Rapidly

- D) None of these
- Q.25 Capacitor charges or discharges:
 - A) Linearly with time
 - B) Exponentially with time
 - C) Sinusoidally with time
 - D) None of these
- Q.26 " $\frac{t}{RC}$ " has the dimensions same as that of:
 - A) Time

C) Frequency

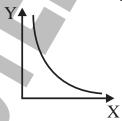
B) Strain

- D) Capacitance
- Q.27 In the following charging curve of capacitor what does the slope represent?

A) Capacitance

- C) Current passing
- B) Charge stored
- D) Voltage
- Q.28 Referring to the Question # 27, the value of current will be maximum at:
 - A) Point A

C) Point C


B) Point B

- D) Same at all points
- Q.29 Referring to Question # 27, the charging speed of capacitor is maximum at:
 - A) Point A

C) Point C

B) Point B

- D) Same at all points
- Q.30 What physical quantities may X and Y represent? (Y represents the first mentioned quantity):

A) Electric Intensity vs charge

Your STEP Towards A Brighter Future!

PHYSICS Unit-6

ANSWER KEY (Worksheet-02)					
1	D	11	C	21	В
2	D	12	D	22	D
3	D	13	C	23	A
4	C	14	В	24	A
5	В	15	D	25	В
6	A	16	В	26	В
7	C	17	C	27	C
8	D	18	С	28	A
9	D	19	В	29	A
10	A	20	D	30	D

SOLUTIONS

Unit – 6 (WS-02)

Q.1 Answer is "D"

Solution:- "A capacitor is a two terminal passive device which stores electric potential energy (due to charge storage) in its electric field".

Q.2 Answer is "D"

Solution:- In the absence of dielectric "C" remains same whenever "V" changes.

Q.3 Answer is "D"

Solution:- Capacitance does not depend on:

- (i) Thickness of plates
- (ii) Metal of plates

Q.4 Answer is "C"

Solution:-
$$C = \frac{A\varepsilon_{\circ}}{d}$$

Q.5 Answer is "B"

Solution:
$$C_{med} = \varepsilon_r C_{vac}$$

Q.6 Answer is "A"

Solution:-
$$V_{med} = \frac{V_{vac}}{\varepsilon_r}$$

Q.7 Answer is "C"

Solution:
$$C_{vac} = \frac{A\varepsilon_{\circ}}{d}$$

Q.8 Answer is "D"

Solution:- We must remember that the formula's for combination of capacitors are inverse of that for the resistances, so in series combination if we have number of unequal capacitors then we use;

$$\bullet \quad \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

• For just two unequal capacitors we use;

$$C_{eq} = \frac{\text{Product of capacitances}}{\text{Sum of capacitances}} = \frac{C_1 C_2}{C_1 + C_2}$$

Q.9 Answer is "D"

Solution:
$$C_P = nC$$
; $C_S = C/n$

Q.10 Answer is "A"

Solution:
$$\frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Q.11 Answer is "C"

Solution:
$$Q = C_{e}V$$

O.12 Answer is "D"

Solution: Because of electric polarization of dielectric;

- Charge stored on plates remains same.
- Effective area of plates increases.
- Surface charge density decreases $\left(\sigma = \frac{Q}{A_{eff}}\right)$
- Electric field strength decreases $\left(E = \frac{\sigma}{\varepsilon}\right)$
- Potential difference between plates decreases (V = Ed)

• Capacitance increases $(C_{med} = \varepsilon_r C_{vac})$

Q.13 Answer is "C"

Solution:- Because of electric polarization of dielectric;

- Charge stored on plates remains same.
- Effective area of plates increases.
- Surface charge density decreases $\left(\sigma = \frac{Q}{A_{eff}}\right)$
- Electric field strength decreases $\left(E = \frac{\sigma}{\varepsilon}\right)$
- Potential difference between plates decreases (V = Ed)
- Capacitance increases $(C_{med} = \varepsilon_r C_{vac})$

Q.14 Answer is "B"

Solution:- Start simplifying circuit form top right corner

Q.15 Answer is "D"

Solution:-
$$V_{net} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$

Q.16 Answer is "B"

Solution: For series capacitors

$$V_1 = \left(\frac{C_2}{C_1 + C_2}\right)V, V_2 = \left(\frac{C_1}{C_1 + C_2}\right)V$$

Q.17 Answer is "C"

Solution:
$$C_e = (2) + \left(\frac{2 \times 2}{2 + 2}\right)$$

Q.18 Answer is "C"

Solution: All capacitors are in parallel

Q.19 Answer is "B"

Solution:- All capacitors are in series

Q.20 Answer is "D"

Solution:- " $\frac{1}{2}E^2\varepsilon_{\circ}\varepsilon_r$ " is the relation for energy density means energy per unit volume but not just energy.

Q.21 Answer is "B"

Solution:- Capacitor stores electric potential energy in the form of electric field (E) between the two plates of capacitor, can be seen in following relation;

$$Energy = \frac{1}{2}Ad\varepsilon_{\circ}\varepsilon_{r}E^{2}$$

Q.22 Answer is "D"

Solution: Energy $\propto E^2$

Q.23 Answer is "A"

Solution:- By placing medium $C\uparrow$, $V\downarrow$ as

Energy= $\frac{1}{2}CV^2$ Since power of V is greater than C, so "V" decides energy trend.

Q.24 Answer is "A"

Solution: ↑t=RC↑

Greater the value of time constant, slower will be the charging speed.

Q.25 Answer is "B"

Solution:- Discharging equation \Rightarrow $q = q_e e^{\frac{-t}{RC}}$

Q.26 Answer is "B"

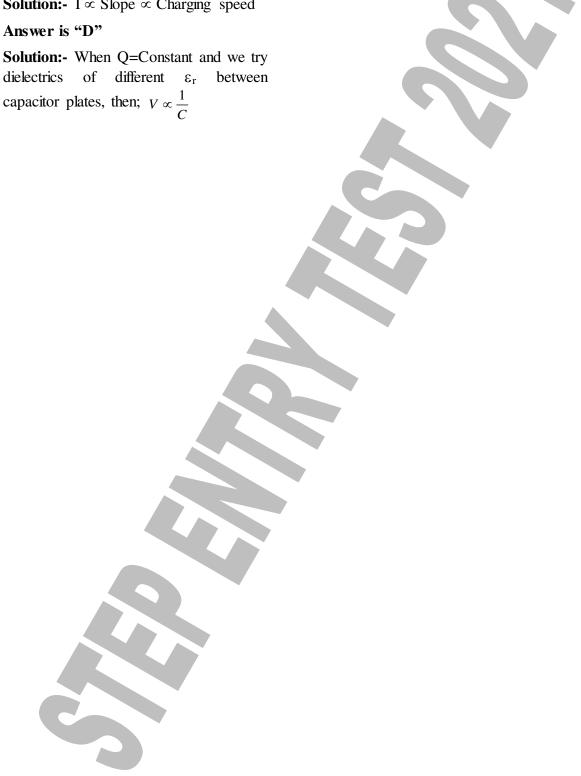
Solution:- RC has units of time

Q.27 Answer is "C"

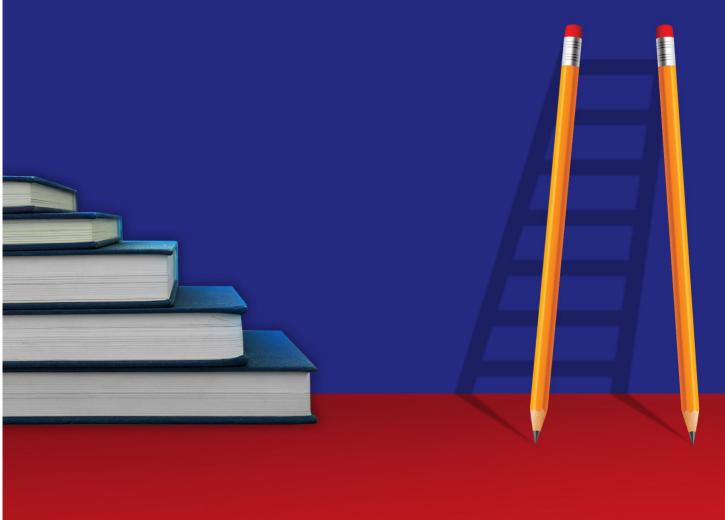
Solution:- Slope = $\frac{\Delta y}{\Delta x} = \frac{\Delta q}{\Delta t} = I$

Q.28 Answer is "A"

PHYSICS Unit-6


 $I{=}Slope{\rightarrow}Maximum$ **Solution:**at starting point A

Q.29 Answer is "A"


Solution:- $I \propto Slope \propto Charging speed$

Q.30 Answer is "D"

dielectrics of different ϵ_r between

