

Q.10	How many differences	erent resistances are possible with two equa	USE THIS SPACE FOR		
	A) 2	C) 4	SCRATCH WORK		
	B) 3	D) 5			
	, -	, -			
Q.11	Find the equival				
		$R_2=6\Omega$			
		6 V			
	Α) 3 Ω	$^{+1-}$ C) 6 Ω			
	B) 12 Ω	D) 4 Ω			
Q.12	Referring to Q.1	1, the total current drawn from source is:			
	A) 0.5 A	C) 1 A			
0.12	B) 2 A	D) 0.25 A			
Q.13	Referring to Q.1	1, the current passing through R ₁ is:			
	A) 0.5 A	C) I A			
~	B) 2 A	D) 0.25 A			
Q.14	Referring to Q.11, the current passing through R₂ is::				
	A) 0.5 A	C) 1 A			
	B) 2 A	D) 0.25 A			
Q.15	Referring to Q.11, the current passing through R ₃ is:				
	A) 0.5 A	C) 1 A			
	B) 2 A	D) 0.25 A			
Q.16	2×10 ⁶ electrons j	c			
	current flowing				
	A) 32×10 ⁻⁹ A	C) 3.2×10^{-10} A			
	B) 32×10 ⁻¹⁰ A	D) 0.32×10 ⁻¹⁰ A			
Q.17	A carbon resiste	A			
	current is passin	e			
	current will beco	ome:			
	A) 3 A	C) 4.5 A			
	B) 1.5 A	D) 6 A			
Q.18	If the resistance	If the resistance of each resistor is 10 ohm in the following			
	figure, then wha	s			
	$\cdot \mathbf{A}'$ and $\cdot \mathbf{B}'$:				

ANSWER KEY (Worksheet-03)					
1	D	11	С		
2	Α	12	С		
3	Α	13	Α		
4	Α	14	Α		
5	В	15	С		
6	С	16	С		
7	В	17	Α		
8	С	18	D		
9	В	19	С		
10	В	20	С		

SOLUTIONS Unit – 7 (WS-03)

Q.1 Answer is "D"

Solution:- Graph of ohm's law is between "V" and "I". Since $V \propto I$, so, graph is straight line inclined with "V-axis".

Q.2 Answer is "A"

Solution:- By ohm's law:

$$R = \frac{V}{I}$$

 $1 \text{ ohm} = \frac{1 \text{ volt}}{1 \text{ ampere}}$

Q.3 Answer is "A"

Solution:- Resistivity of material of wire is defined as:

$$\rho = \frac{RA}{L} \rho = \frac{R(1 m^2)}{(1 m)}$$

Q.4 Answer is "A"

Solution:- By formula

$$\rho = \frac{RA}{L} = \frac{\Omega m^2}{m} = \Omega m$$

Q.5 Answer is "B"

Solution:- $R_e = R_1 + R_2 + R_3 + \dots$

Q.6 Answer is "C"

Solution:- If resistances are same then potential is also same, otherwise it is different.

Q.7 Answer is "B"

Solution: $R_e = R_1 + R_2 + R_3$

Q.8 Answer is "C"

Solution:-
$$I = \frac{V}{R_{o}}$$

Q.9 Answer is "B"

Solution:-
$$I = \frac{V}{R}$$

Q.10 Answer is "B"

Solution:- By two resistors of equal value, following different resistances can be obtained:

i.
$$-\underset{R_e=R}{\overset{R}{\longrightarrow}}$$

ii.
$$R = 2R$$

- Q.11 Answer is "C" Solution:- $R_e = (R_1 || R_2) + R_3$
- Q.12 Answer is "C"

Solution:- $V = I R_e$

Q.13 Answer is "A"

Solution: $I_1 = \left(\frac{R_2}{R_1 + R_2}\right) I$

Q.14 Answer is "A"

Solution:
$$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I$$

Q.15 Answer is "C"

Solution: $I_3 = I_1 + I_2$

Q.16 Answer is "C"

Solution:-

Use:

$$I = \frac{Q}{t} = \frac{ne}{t}$$

Q.17 Answer is "A"

Solution:-

Initially

$$V = IR$$

$$R = \frac{V}{I} = \frac{50}{2} = 25 \ \Omega$$

After increasing voltage

$$I' = \frac{V'}{R} = \frac{75}{25} = 3A$$

Q.18 Answer is "D"

Solution:-

 $R_{AB} = (10+10) || (10+10)$

Q.19 Answer is "C"

Solution:-

 $R_s = nR$

$$R_{p} = \frac{R}{n}$$

Taking ratio

$$\frac{R_s}{R_p} = \frac{nR}{\frac{R}{n}} = n^2$$

Q.20 Answer is "C"

Solution:-

Any current carrying object is electrically neutral.

A PROGRAM BY PUNJAB GROUP

