

Q.8	A magnetic field is appli will:	<u>USE THIS SPACE FOR</u> <u>SCRATCH WORK</u>	
	A) Start moving	C) Remain at rest	
	B) Start rotating	D) Start accelerating	
Q.9	A charge particle is p	rojected perpendicular into a	
	region of B such that what will be true about i		
	A) It will be in angular dy		
	B) It will be continuously remain same		
	C) It will move along a ci	rcular path with no torque	
	D) All of these		
Q.10	An α-particle is projected shown in the following fig torque in it?	d in a region of magnetic field as gure. What will be the direction of	
	$ \begin{array}{c} \overrightarrow{V} & x & x \\ \overrightarrow{V} & x & x \\ x & x & x \\ \alpha - \text{particle} & x & x \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	A) Clock-wise	C) Along axis of rotation	
	B) Anti-clock wise	D) It has no torque	
Q.11	An electron is injected in components of velocity p direction. The path of th	to a uniform magnetic field with arallel to and normal to the field e electron is a:	
	A) Helix	C) Parabola	
	B) Circle	D) Straight line	
Q.12	Particle enters a region where a uniform electric field E and a uniform magnetic field B exist. If E and B are perpendicular to each other and also perpendicular to the velocity v of the particle, then particle will move undeviated if $v=$		
	A) $\frac{B}{E}$	C) $\frac{E}{B}$	
	B) EB	D) $\frac{E^2}{B}$	

PHYSICS

Q.13	A beam of β particles is proj as shown in the figure. The β	<u>USE THIS SPACE FOR</u> <u>SCRATCH WORK</u>	
	x x x x x x x x x x x x x x x x x x x x	V ← ●	
	A) Will deflect in the upward d	lirection	
	B) Will deflect in the downwar	rd direction	
	C) Suffer no deflection		
	D) Will deflect out of paper		
Q.14	When a charge is moving with	uniform speed it produces?	
	A) Constant electric field C	C) Varying electric field	
	B) Constant magnetic field I	D) Varying magnetic field	
Q.15	The geometry of magnetic fi	eld lines produced around	
	the current carrying conduct	or depend upon:	
	A) Length of conductor (C) Shape of conductor	
	B) Area of conductor \Box	D) All of these	
Q.16	Magnetic field <i>B</i> due to finit solenoid at the corners of sole	te length current carrying enoid is:	
	A) $B = \mu_{\circ} nI$	$E) B = \frac{1}{2} \mu_{\circ} nI$	
	B) $B = 2\mu_{\circ}nI$	$D) B = 4\mu_{\circ}nI$	
Q.17	The magnetic field at a dis carrying current I is 0.5 T. T distance 2r is:	tance r from a long wire Then the magnetic field at a	
	A) 0.5 T	C) 2.0 T	
	B) 0.25 T	D) 1.0 T	
Q.18	What is true regarding maintensity:	agnetic force & magnetic	
	A) If electron's movement is pa will rotate clockwise		
	B) If electron's movement is pa will rotate anti clockwise		
	C) If electron enters perpendicuparallel to plane	ular to field force would be	
	D) If electron enters perpendicu maximum	ular to field force will be	

PHYSICS

Q.19	If electron passes throug electromagnetic force on elec	n axis of solenoid then tron will be:	<u>USE THIS SPACE FOR</u> <u>SCRATCH WORK</u>
	A) Towards the outward C	C) Towards the inward	
	B) Parallel to its motion I	D) No force acts on it	
Q.20	A proton and an ∝-particle, energy, enter a uniform ma radii of their circular paths w		
	A) 1:1	C) 2:1	
	B) 1:2	D) 4:1	
Q.21	What current should pass the m long with 10,000 turns of have a magnetic field of 0.4 T	rough a solenoid that is 0.5 copper wire so that it will ?	
	A) 16 A	C) 10 A	
	B) 25 A	D) 14.5 A	
Q.22	A velocity selector has a maperpendicular electric field of what will be the speed of through the selector?		
	A) $3.7 \times 10^5 \text{ m s}^{-1}$	C) 2.3×10 ⁴ m s ⁻¹	
	B) 3.3×10^4 m s ⁻¹	D) 4.6×10 ⁵ m s ⁻¹	
Q.23	The magnetic field lines in th	e middle of a solenoid are:	
	A) Circles	C) Spiral	
	B) Parallel to axis	D) Perpendicular to axis	
Q.24	If some current is passed in a		
	A) Gets expanded	C) Oscillates	
	B) Gets compressed	D) Remains unchanged	
Q.25	Which of the following grap variation of magnetic flux de for a straight wire carrying a		
	A)	C) $B r$	
	B)	D) $\stackrel{\text{B}}{\overbrace{r}}$	r

PHYSICS

ANSWER KEY (Worksheet-05)						
1	B	11	Α	21	Α	
2	Α	12	С	22	В	
3	В	13	Α	23	В	
4	B	14	В	24	В	
5	Α	15	С	25	С	
6	В	16	С	26	Α	
7	Α	17	В	27	В	
8	С	18	D			
9	D	19	D			
10	D	20	Α			

SOLUTIONS Unit – 8 (WS-05)

- Q.1 Answer is "B" Solution:- Permeability of free space is given as: $\mu_{\circ} = 4\pi \times 10^{-7} Wb A^{-1} m^{-1}$
- **Q.2** Answer is "A" Solution:- Magnetic field inside the solenoid is: $B = \mu_{\circ} nI = \mu_{\circ} \frac{N}{\ell} I$
- Q.3 Answer is "B"

Solution:- $n = \frac{N}{L} = remain same$

Q.4 Answer is "B" Solution:-

$$\sum_{r=1}^{N} \left(\vec{B} \cdot \Delta \vec{\ell} \right) = \mu_{\circ} \begin{pmatrix} \text{Current Enclosed by} \\ \text{Amperian Path} \end{pmatrix}$$

Q.5 Answer is "A" Solution:- Ampere's law for straight wire is:

$$B = \frac{\mu \cdot I}{2\pi r} = \frac{\mu \cdot 2I}{4\pi r}$$

Q.6 Answer is "B" Solution:- Magnetic field inside solenoid is given as:

$$B = \mu_{\circ} nI = \frac{\mu_{\circ} NI}{\ell}$$

Q.7 Answer is "A"

Solution:- According to Ampere's law $B \propto I$

Q.8 Answer is "C"

Solution:- When electron is at rest, v=0 then, $F = evB\sin\theta = 0$

Q.9 Answer is "D"

Solution:- W= Δ K.E; as no work is done so K.E remains same. Also in angular dynamic equilibrium, " ω " = constant and $\alpha = 0$ so $\tau = I\alpha$, there will be no torque.

Q.10 Answer is "D"

Solution:- The magnetic force on α particle is given as $\vec{F} = q(\vec{v} \times \vec{B})$

The direction of force by right hand rule turns out to be upward when α -particle enters in magnetic field. So, this force deflects the path in anticlockwise direction.

Q.11 Answer is "A"

Solution:-

- i. If $\theta = 90^{\circ}$ between \vec{v} and \vec{B} , then path is circular.
- ii. If $\theta = 0^{\circ}/180^{\circ}$, then path is straight line.
- iii. If θ is other than 0°,90°,180°, then path is helical.

Q.12 Answer is "C"

Solution:- Use $F_B = F_E$, qvB = qE, $v = \frac{E}{B}$

Q.13 Answer is "A"

Solution:- " β " has "-ve" charge so opposite deflection.

Q.14 Answer is "B"

Solution:- A charge moving with uniform speed produces magnetic field which is of constant value at any certain point around it.

Note:-

If Question is asked that a charge moving with uniform speed possesses / exhibits, then its answer would have been both electric and magnetic fields.

Q.15 Answer is "C"

Solution:- Geometry of magnetic field lines depend on shape of conductor only.

Q.16 Answer is "C"

Solution:- At corners field is half as compared to field at centre.

Q.17 Answer is "B"

Solution:- For straight wire;

$$B = \frac{\mu \cdot I}{2\pi r} \quad \Rightarrow \quad B \propto \frac{1}{r}$$

Q.18 Answer is "D"

Solution:- When a charge particle enter into magnetic field region perpendicularly, then;

 $F = qvB\sin 90^\circ = qvB = \max$

Q.19 Answer is "D"

Solution:- In this case, the velocity of electron is either parallel ($\theta = 0^{\circ}$) or antiparallel ($\theta = 180^{\circ}$) to magnetic field, hence

 $F = qvB\sin\theta = 0$

So, electron will continue its straight line motion.

Q.20 Answer is "A" Solution:-

$$q \not \sim B = \frac{mv^2}{r}$$

$$qB = \frac{mv}{r}$$

$$r = \frac{mv}{qB} = \frac{p}{qB} = \frac{\sqrt{2m}}{qB}$$
So,
$$\frac{r_p}{r_\alpha} = \sqrt{\frac{m_p}{m_\alpha}} \times \frac{q_\alpha}{q_p}$$

Put the value of $m_{\alpha} = 4m_p$ and $q_{\alpha} = 4q_p$ solve.

Q.21 Answer is "A" Solution:- Use *B* =

Q.22 Answer is "B"

Solution:- v =

Q.23 Answer is "B"

Solution:- Field lines inside solenoid are along its axis.

Q.24 Answer is "B"

Solution:- Adjacent loops of spring carry current in same direction and get attracted, hence spring gets compressed.

Q.25 Answer is "C"

Solution:-
$$B = \frac{\mu_o I}{2\pi r} \implies B \propto \frac{1}{r}$$

Solution:- $\phi = BA\cos\theta$

Put
$$\phi = \frac{BA}{2}$$
 and solve

Q.27 Answer is "B"

Solution:-

i.
$$\phi = \frac{1}{\sqrt{2}} \phi_{\text{max}}$$

$$BA\cos\theta = \frac{1}{\sqrt{2}}BA$$

Solve for θ .

ii. To find angle between plane area and magnetic field use

 $\alpha = 90^\circ - \theta$

A PROGRAM BY PUNJAB GROUP

